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Abstract

A three-phase confocal elliptical cylinder model is proposed for fiber-reinforced composites, in terms of which a

generalized self-consistent method is developed for fiber-reinforced composites accounting for variations in fiber section

shapes and randomness in fiber section orientation. The reasonableness of the fiber distribution function in the present

model is shown. The dilute, self-consistent, differential and Mori–Tanaka methods are also extended to consider

randomness in fiber section orientation in a statistical sense. A full comparison is made between various microme-

chanics methods and with the Hashin and Shtrikman�s bounds. The present method provides convergent and rea-
sonable results for a full range of variations in fiber section shapes (from circular fibers to ribbons), for a complete

spectrum of the fiber volume fraction (from 0 to 1, and the latter limit shows the correct asymptotic behavior in the fully

packed case) and for extreme types of the inclusion phases (from voids to rigid inclusions). A very different dependence

of the five effective moduli on fiber section shapes is theoretically predicted, and it provides a reasonable explanation on

the poor correlation between previous theory and experiment in the case of longitudinal shear modulus.

� 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Generalized self-consistent method; Three-phase confocal elliptical cylinder model; Effective moduli; Micromechanics of
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1. Introduction

The determination of the effective moduli of composites has been widely investigated and several mi-

cromechanics approaches have been developed, which significantly improved the initial predictions. The

dilute, self-consistent, differential and Mori–Tanaka methods are the micromechanics methods that have

been extensively used, and they are all based on the two-phase model. The essential assumption in the dilute

model is that a single inclusion is embedded in an infinite matrix subjected to a remote loading in the
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Nomenclature

A1;A2;A3 area of the fiber, matrix and composite in a three-phase model
L1; L2 the interface contour between the fiber, matrix and composite

u; v in-plane displacement components

Fx; Fy components of the in-plane stress resultants

OXY ;Oxy global and local Cartesian coordinate systems
b angle made by the X -axis and x-axis
O1;O2 common foci of elliptical contours L1 and L2
rij; eij stress and strain components
B;GðGTÞ;EL;GLT; mLT in-plane volume and shear moduli, longitudinal tensile and shear moduli, major

Poisson�s ratio of a transversely isotropic material
j material constant, j ¼ 3� 4m for plane strain and j ¼ ð3� mÞ=ð1þ mÞ for plane stress, where m

is Poisson�s ratio
k fiber volume fraction

c1; c2 aspect ratio of elliptical contours L1 and L2
a1; b1; a2; b2 semimajor axes and semiminor axes of L1 and L2
z; f complex variable in physical plane and mapping plane
XðfÞ mapping function

R a constant in the mapping function

A0
1;A

0
2;A

0
3 image of A1;A2;A3

L00; L
0
1; L

0
2 image of O1;O2; L1; L2

q0; q1; q2 radii of L
0
0; L

0
1; L

0
2

q; h polar coordinates in the f-plane
u�ðzÞ;w�ðzÞ in-plane complex potentials in the physical plane (z-plane)
uðfÞ;wðfÞ in-plane complex potentials in the mapping plane (f-plane)
UðfÞ;WðfÞ;xðfÞ defined by Eqs. (35) and (36)
am; bm; cm; dm; em; fm coefficients of Laurent series
pij; qij; sij constants defined by Eq. (52)
J Jacobian

w antiplane displacement

f ðzÞ complex potential for antiplane strain

M i moduli matrices

A strain gradient concentration matrix
Zi strain vector

Z1 far-field strain vector

QðbÞ transformation matrix

I third order unit matrix

½
�loc subscript refers to the local Cartesian coordinates

½
�dil; ½
�sc; ½
�dif ; ½
�MT superscripts refer to dilute approximation, self-consistent method, differential
scheme and Mori–Tanaka method, respectively

½
�a; ½
�b; ½
�c subscripts refer to the three fundamental problems defined by Eqs. (16)–(18), respectively
½
�1; ½
�2; ½
�3 subscripts refer to fiber, matrix and composite, respectively
½
�0 superscript denotes the derivative with respect to the argument

½~

� above sign denotes averaging

½�

� above sign denotes complex conjugate
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composites. The essential assumption in the self-consistent model is that a single inclusion is embedded in

an infinite equivalent medium of the composites. Obviously, the dilute model ignores the inclusion inter-

action, while the self-consistent model overestimates it. The two models have traditionally received criticism

on their accuracy. As an incremental form of the self-consistent method, the differential method does not
exhibit the intuitively unacceptable results of the self-consistent method. However, it may lead to non-

unique solutions (Norris, 1985). The key assumption in the Mori–Tanaka method is that a single inclusion

is embedded in an infinite matrix subjected to an applied remote field equal to the as-yet-unknown average

stress (strain) field in the matrix, and the method considerably improved the accuracy of the dilute method

(Mori and Tanaka, 1973; Taya and Chou, 1981; Benveniste, 1985; Zhao and Weng, 1990). The pros

and cons of the Mori–Tanaka method have been discussed by Christensen (1990) and Christensen et al.

(1992).

The generalized self-consistent method is a more sophisticated micromechanics approach (Christensen
and Lo, 1979; Luo and Weng, 1987; Christensen, 1993; Huang and Hu, 1995; Jiang and Cheung, 1998,

2001; Riccardi and Montheilet, 1999; Jiang et al., 2001). Different from the aforementioned microme-

chanics methods based on the two-phase model, the generalized self-consistent method is based on a three-

phase model: an inclusion is embedded in a finite matrix, which in turn is embedded in an infinite composite

with the as-yet-unknown effective moduli. The generalized self-consistent method provides accurate pre-

dictions for extreme types of inclusions (i.e. voids and rigid inclusions), and the method also gives the

correct asymptotic behavior of composites as the inclusion volume fraction approaches 1 (fully packed). It

is shown that the results of the generalized self-consistent method have excellent agreement with the ex-
perimental data (for example, refer to Huang et al., 1994). The three-phase model is also used to improve

the accuracy of the Mori–Tanaka method (Luo and Weng, 1987).

However, most three-phase models can only accommodate cylindrical and spherical inclusions, and the

studies are still insufficient on the generalized self-consistent method accounting for inclusion shape vari-

ations. Huang and Hu (1995) proposed a three-phase elliptical inclusion model where surrounding elliptical

ring shares the same aspect ratio as the elliptical inclusion. They addressed the problem of an in-plane

isotropic distribution of elliptical inclusions. Riccardi and Montheilet (1999) developed a generalized self-

consistent method for solids containing randomly oriented spheroidal inclusions. Jiang and Cheung (1998)
proposed a three-phase confocal elliptical cylinder model for fiber-reinforced composites. They addressed

the problem of longitudinal shear, which is related to an effective modulus, i.e. the longitudinal shear

modulus of fiber-reinforced composites.

The objective of this work is to develop a systematic generalized self-consistent method for fiber-rein-

forced composites based on the three-phase confocal elliptical cylinder model, so that all the five effective

moduli can be reasonably predicted and the convergence of solutions can be guaranteed in various practical

cases. Using the conformal mapping technique integrated with the Laurent series expansion, the analytical

solutions for relevant plane strain, modified plane strain and longitudinal shear problems are derived. The
algebraic equations are established for predicting all the five effective moduli of fiber-reinforced composites,

accounting for the randomness in distribution and section orientation of fibers in a statistical sense. The

dilute, self-consistent, Mori–Tanaka and differential methods are the micromechanics methods were first

developed for monotonically aligned fiber-reinforced composites. In this paper the four micromechanics

methods are also extended to cover the case of transversely randomly oriented fibers. (Note such an ex-

tension of the Mori–Tanaka method given by Zhao and Weng, 1990.) Thus a full comparison is made

among various micromechanics methods and with Hashin and Shtrikman�s upper and lower bounds
(Hashin and Shtrikman, 1963).
Hu and Weng (2000a,b) shed light on the connections between several commonly used micromechanics

models as well as the inclusion distribution functions in three-phase models. In this paper, the dependence

of the distribution functions on the volume fraction is examined, and the reasonableness of the fiber dis-

tribution function in the three-phase confocal elliptical cylinder model is shown.
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Finally the sensitivity of the five effective moduli to fiber shapes is examined. The study is useful in

designing fiber-reinforced composites based on a fundamental understanding of the relation between the

macroscopic properties and microstructures of composites.

2. Description of the plane strain problem

First, the plane strain problem of the three-phase confocal elliptical cylinder model is studied, which is

related to the prediction of two effective moduli, i.e. the in-plane bulk and transverse shear moduli of fiber-

reinforced composites. Fig. 1 is a schematic diagram of the model. The elliptical region A1 encircled by the
contour L1 represents the fiber cross-section and the elliptical ring region A2 between L1 and L2 represents
the matrix in the representative unit cell. L1 and L2 share the common foci O1 and O2. The infinite region A3
outside L2 represents the equivalent medium of the composite with the as-yet-unknown effective elastic

moduli, and the composite is transversely isotropic in a statistical sense. Building a local Cartesian coor-

dinate system Oxy along the principal axes of the confocal ellipses, then the continuity conditions of the
displacements and stresses on L1 and L2 can be expressed as

ðuþ ivÞ1 ¼ ðuþ ivÞ2; ðFx þ iFyÞ1 ¼ ðFx þ iFyÞ2 on L1 ð1Þ

ðuþ ivÞ2 ¼ ðuþ ivÞ3; ðFx þ iFyÞ2 ¼ ðFx þ iFyÞ3 on L2 ð2Þ
where u and v are the displacement components and Fx and Fy are the components of the stress resultants
along any arc on L1 or L2; the subscripts 1, 2 and 3 refer to the fiber, matrix and equivalent medium of the
composite in the three-phase model. Eqs. (1) and (2) have been cast in complex form for the convenience of

analysis.

Letting OXY be the global Cartesian coordinate system and b be the angle made by the X -axis and x-axis
(Fig. 1), we can write

rXX ¼ ryy þ rxx
2

� ryy � rxx
2

cos 2b � rxy sin 2b ð3Þ

rYY ¼ ryy þ rxx
2

þ ryy � rxx
2

cos 2b þ rxy sin 2b ð4Þ

rXY ¼ � ryy � rxx
2

sin 2b þ rxy cos 2b ð5Þ

Fig. 1. Schematic diagram of the three-phase confocal elliptical cylinder model.
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where ðrXX ; rYY ; rXY Þ and ðrxx; ryy ; rxyÞ are the stress components in the global and local Cartesian coor-
dinates, respectively.

The effective moduli of composites can be derived by considering the volume average of the stress and

strain fields. Letting B3 be the effective in-plane bulk modulus and G3 be the effective transverse shear
modulus, we have

~rrXX þ ~rrYY ¼ 2B3ð~eeXX þ ~eeYY Þ ð6Þ

~rrXY ¼ 2G3~eeXY ð7Þ
where eXX ; eYY ; eXY are the in-plane strain components in the global Cartesian coordinates; the above wave
sign ‘‘�’’ denotes averaging.
According to the generalized self-consistent method, the volume fraction of the fiber in a representative

unit cell ðkÞ is equal to that of the whole composite, so we have

k ¼ A1
A1 þ A2

¼ a1b1
a2b2

ð8Þ

where ða1; b1Þ and ða2; b2Þ are the semimajor axes and semiminor axes of L1 and L2, respectively. According
to the generalized self-consistent method, Eqs. (6) and (7) hold for a representative unit cell. For the unit

cell, the averaged stresses of the left-hand sides of the two equations can be expressed as

ð~rrXX þ ~rrYY Þ ¼ kð~rrXX þ ~rrYY Þ1 þ ð1� kÞð~rrXX þ ~rrYY Þ2 ð9Þ

~rrXY ¼ kð~rrXY Þ1 þ ð1� kÞð~rrXY Þ2 ð10Þ

Analogous averaged strain expressions of the right-hand sides of Eqs. (6) and (7) can be arrived at. Thus,

Eqs. (6) and (7) can be written as

kð~rrXX þ ~rrYY Þ1 þ ð1� kÞð~rrXX þ ~rrYY Þ2 ¼ B
k
B1

ð~rrXX
�

þ ~rrYY Þ1 þ
ð1� kÞ
B2

ð~rrXX þ ~rrYY Þ2
�

ð11Þ

kð~rrXY Þ1 þ ð1� kÞð~rrXY Þ2 ¼ G
k
G1

ð~rrXY Þ1
�

þ ð1� kÞ
G2

ð~rrXY Þ2
�

ð12Þ

Obviously, the key work is to determine the averaged stress fields. Averaging of the stress fields should be

taken over the region under consideration, as well as over the orientation b, which is based on the as-
sumption of statistical uniformity.

~rrIJ ¼
1

2pA

Z 2p

0

Z
A

rIJ dAdb I ; J ¼ X ; Y ð13Þ

where A is the area. For brevity, the conventional indicial notation of the stress is used.
It is seen from Eqs. (11) and (12) that two kinds of remote uniform stress state in the global coordinates

should be considered to determine the two effective moduli B3 and G3:

(1) Remote biaxial tension

r1
XX ¼ r1

YY 6¼ 0; r1
XY ¼ 0 ð14Þ

(2) Remote shear

r1
XX ¼ r1

YY ¼ 0; r1
XY 6¼ 0 ð15Þ
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Substituting Eqs. (3)–(5) into Eq. (13), it is seen that the double integral is uncoupled and the integral

over the orientation b can be completed in closed form. Thus, the work boils down to obtaining the stress
field of the following three fundamental problems in the local coordinate system (also consult Huang and

Hu, 1995):

(a) Remote unit biaxial tension

r1
xx ¼ r1

yy ¼ 1; r1
xy ¼ 0 ð16Þ

aIn this case, the normal stresses are denoted by rxxa and ryya.
(b) Remote unit biaxial tension/compression

r1
xx ¼ �r1

yy ¼ �1; r1
xy ¼ 0 ð17Þ

aIn this case, the normal stresses are denoted by rxxb and ryyb.
(c) Remote unit shear

r1
xx ¼ r1

yy ¼ 0; r1
xy ¼ 1 ð18Þ

aIn this case, the shear stress is denoted by rxyc.

Once the solutions to the three fundamental problems are available, the averaged stresses in Eqs. (11)

and (12) (in the global coordinate system) can be obtained from the following equations:

ð~rrXX þ ~rrYY Þk ¼ ð~rrxxa þ ~rryyaÞkr1
XX ð19Þ

ð~rrXY Þk ¼
1

4
ð~rryyb

�
� ~rrxxbÞk þ

1

2
ð~rrxycÞk

�
r1
XY ð20Þ

where the subscript k ¼ 1; 2 refers to the fiber and matrix in a representative unit cell, and averaging of the
stresses for the three basic problems is taken only over the regions under consideration. (The orientation
averaging in a statistical sense has been finished.)

3. Complex potentials solutions of the fundamental problems

In formulating the fundamental problems, we use the two complex potentials u�ðzÞ and w�ðzÞ (two
analytical functions, z ¼ xþ iy) of Muskhelishivili (1975). The stress components ðrxx; ryy ; rxyÞ, the dis-
placement components ðu; vÞ and the components of the resultant stress ðFx; FyÞ in Cartesian coordinates are
related to u�ðzÞ and w�ðzÞ such that

rxx þ ryy ¼ 2bu�0ðzÞ þ u�0ðzÞc ð21Þ

ryy � rxx þ 2irxy ¼ 2 �zzu�00ðzÞ
h

þ w�0ðzÞ
i

ð22Þ

2Gðuþ ivÞ ¼ ju�ðzÞ � zu�0ðzÞ � w�ðzÞ ð23Þ

ðFx þ iFyÞ ¼ �i u�ðzÞ
j

þ zu�0ðzÞ þ w�ðzÞ
kB
A

ð24Þ

where j ¼ 3� 4m for plane strain and j ¼ ð3� mÞ=ð1þ mÞ for plane stress, G and m are shear modulus and
Poisson�s ratio, respectively; the overbar represents the complex conjugate, the prime denotes differentiation
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with respect to the argument and ½
�BA signifies the change in the bracketed function in moving from point A
to point B along any arc AB.
To solve the problem, another complex variable

f ¼ n þ ig ¼ qeih ð25Þ
is introduced, where q and h are the polar coordinates in the complex f-plane. Making use of the conformal
transformation of the z-plane onto the f-plane (Muskhelishivili, 1975)

z ¼ XðfÞ ¼ R f

�
þ 1

f

	
ð26Þ

where R is a constant to be determined, the regions A1, A2 and A3 (infinite region) divided by the imaginary
cut O1O2, the elliptical contours L1, L2 in the z-plane (Oxy-plane, Fig. 1) are mapped onto the circular ring
regions A0

1, A
0
2 and A

0
3 divided by L

0
0, L

0
1 and L

0
2 with radii q0 ¼ 1, q1 and q2 in the f-plane (Fig. 2), re-

spectively.

From this transformation, it is seen that

x ¼ R q

�
þ 1

q

	
cos h; y ¼ R q

�
� 1

q

	
sin h ð27Þ

ak ¼ R qk

�
þ 1

qk

	
; bk ¼ R qk

�
� 1

qk

	
k ¼ 1; 2 ð28Þ

Since the geometrical parameters of the fiber section, a1 and b1, are known, R and q1 can be determined
by using Eq. (28). The substitution of Eq. (28) into Eq. (8) yields

k ¼ q21 � 1=q21
q22 � 1=q22

ð29Þ

in terms of which, q2 can be determined as the volume fraction of fibers, k, is prescribed.
With the aid of Eq. (26), Eqs. (21)–(24) can be written as

rx þ ry ¼ 2bUðfÞ þ UðfÞc ð30Þ

ryy � rxx þ 2irxy ¼ 2
XðfÞ
X0ðfÞU0ðfÞ
"

þ WðfÞ
#

ð31Þ

Fig. 2. Conformal mapping.

C.P. Jiang et al. / International Journal of Solids and Structures 40 (2003) 2589–2609 2595



2Gðuþ ivÞ ¼ juðfÞ � XðfÞUðfÞ � wðfÞ ð32Þ

Fx þ iFy ¼ �i uðfÞ
h

þ XðfÞUðfÞ þ wðfÞ
iB
A

ð33Þ

where

uðfÞ ¼ u�½XðfÞ�; wðfÞ ¼ w�½XðfÞ� ð34Þ

UðfÞ ¼ u0ðfÞ=X0ðfÞ; WðfÞ ¼ w0ðfÞ=X0ðfÞ ð35Þ
Letting

xðfÞ ¼ �zzu�0ðzÞ þ w�ðzÞ ¼ XðfÞ
X0ðfÞu0ðfÞ þ wðfÞ ð36Þ

and substituting Eqs. (32) and (33) into Eqs. (1) and (2), the continuity conditions of the displacements and

stresses on L1 and L2 are expressed as

1

G1
½j1u1ðfÞ � x1ðfÞ� ¼

1

G2
½j2u2ðfÞ � x2ðfÞ� f ¼ q1e

ih ð37Þ

u1ðfÞ þ x1ðfÞ ¼ u2ðfÞ þ x2ðfÞ f ¼ q1e
ih ð38Þ

1

G2
½j2u2ðfÞ � x2ðfÞ� ¼

1

G3
½j3u3ðfÞ � x3ðfÞ� f ¼ q2e

ih ð39Þ

u2ðfÞ þ x2ðfÞ ¼ u3ðfÞ þ x3ðfÞ f ¼ q2e
ih ð40Þ

where subscripts 1, 2 and 3 refer to the media in regions A1, A2 and A3, respectively. It is important to note
that xðfÞ is not an analytical function and its series expansion should be derived by Eq. (36) based on the
Laurent expansions of uðfÞ and wðfÞ. First, we consider the symmetrical fundamental problems (a) and (b).
The analytical functions ukðfÞ and wkðfÞ (k ¼ 1; 2; 3) can be expanded into Laurent series

u1ðfÞ ¼
X1
m¼1;3

amðfm þ f�mÞ; w1ðfÞ ¼
X1
m¼1;3

bmðfm þ f�mÞ ð41Þ

u2ðfÞ ¼
X1
m¼1;3

ðcmfm þ c�mf�mÞ; ð1� f�2Þw2ðfÞ ¼
X1
m¼1;3

ðdmfm þ d�mf�mÞ ð42Þ

u3ðfÞ ¼ e1f þ
X1
m¼1;3

e�mf
�m; ð1� f�2Þw3ðfÞ ¼ f1f

 
þ
X1
m¼1;3

f�mf
�m

!
ð43Þ

where each expansion contains only odd terms, and am, bm, cm, c�m, dm, d�m, e�m, f�m, e1, f1 are real con-
stants by the consideration of symmetry. An observation upon Eqs. (36)–(40) and the numerical compu-

tations shows that it is more efficient to use the Laurent expansions of ð1� f�2Þw2ðfÞ and ð1� f�2Þw3ðfÞ
instead of those of w2ðfÞ and w3ðfÞ, respectively. Since O1O2 is only an imaginary cut and u1ðfÞ and w1ðfÞ
should be holomorphic in the region A1, such that

u1ðeihÞ ¼ u1ðe�ihÞ; w1ðeihÞ ¼ w1ðe�ihÞ ð44Þ
which leads to a�m ¼ am, b�m ¼ bm. Besides the bounded stresses at infinity lead to em ¼ fm ¼ 0 as mP 2.
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By using the remote field conditions (16) and (17), we obtain

e1 ¼
1

2
; f1 ¼ 0 ð45Þ

for the fundamental problem (a) and

e1 ¼ 0; f1 ¼ 1 ð46Þ
for the fundamental problem (b).

ukðfÞ and wkðfÞ (k ¼ 1; 2; 3) for the antisymmetrical fundamental problem (c) have the same Laurent
expansions except that the unknown constants am, bm, cm, c�m, dm, d�m, e�m, f�m, e1, f1 in Eqs. (41)–(43) are
replaced by iam, ibm, icm, ic�m, idm, id�m, ie�m, if�m, ie1, if1. By using the remote field conditions (18), we
obtain

e1 ¼ 0; f1 ¼ 1 ð47Þ
Letting the expansions of ukðfÞ and wkðfÞ (k ¼ 1; 2; 3) are truncated at m ¼ 2M � 1, there are 8M un-

known constants to be determined. After some arrangement, the continuity conditions (37)–(40) can be

written as

p12u1ðfÞ � s12x1ðfÞ � p22u2ðfÞ ¼ 0 f ¼ q1e
ih ð48Þ

ð1� f�2Þbq21u1ðfÞ þ p21x1ðfÞ � p22x2ðfÞc ¼ 0 f ¼ q1e
ih ð49Þ

ð1� f�2Þbp23u2ðfÞ � s23x2ðfÞ � p33u3ðfÞc ¼ 0 f ¼ q2e
ih ð50Þ

ð1� f�2Þbq32u2ðfÞ þ p32x2ðfÞ � p33x3ðfÞc ¼ 0 f ¼ q2e
ih ð51Þ

where

pij ¼
ji
Gi

þ 1

Gj
; qij ¼ � ji

Gi

�
� jj
Gj

	
; sij ¼ � 1

Gi

�
� 1

Gj

	
ð52Þ

where qij and sij have sign (þ) for the symmetrical fundamental problems (a) and (b), and sign ()) for the
antisymmetrical fundamental problem (c), respectively.

Substituting the expansions (41)–(43) truncated at m ¼ 2M � 1 into Eqs. (48)–(51), we obtain 8M linear
algebraic equations with respect to the 8M unknown constants. It is seen that e�m and f�m
(m ¼ 1; 3; . . . ; 2M � 1) are easy to be expressed by the other unknown coefficients. Finally, we can obtain
6M equations to determine the remaining 6M unknown coefficients, and the equations are listed in Ap-
pendix A. Now the three fundamental problems have been formulated.

4. Prediction of the effective transverse moduli

To predict the effective transverse moduli of fiber-reinforced composites by using Eqs. (11) and (12), we

must derive the detailed expression of the averaged stresses. Substituting Eqs. (41)–(43) into Eqs. (30) and

(31), then averaging over the corresponding regions, we can find that the averaged stresses in the three
fundamental problems are only related to some coefficients of the expansions of ukðfÞ and wkðfÞ
(k ¼ 1; 2; 3):

ð~rrxxa þ ~rryyaÞ1 ¼
4

A1

ZZ
A1

Re½U�
1ðzÞ�dA1 ¼

4

A1

ZZ
A0
1

Re½U1ðfÞ�J dA0
1 ¼ 4ða1Þa ð53Þ
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ð~rrxxa þ ~rryyaÞ2 ¼
4

A2

ZZ
A0
2

Re½U2ðfÞ�J dA0
2 ¼ 4

c1 þ c�1
q2
1
q2
2

1þ 1
q2
1
q2
2

 !
a

ð54Þ

ð~rryyb � ~rrxxbÞ1 ¼
2

A1

ZZ
A0
1

Re
XðfÞ
X0ðfÞU0

1ðfÞ
"

þ W1ðfÞ
#
J dA0

1 ¼ 2 b1

"
þ q21

�
þ 1

q21

	 X1
m¼3;5

mam

#
b

ð55Þ

ð~rryyb � ~rrxxbÞ2 ¼
2

A2

ZZ
A0
2

Re
XðfÞ
X0ðfÞU0

2ðfÞ
"

þ W2ðfÞ
#
J dA0

2

¼ 2

1þ 1
q2
1
q2
2

 !
d1

"
þ d1 þ d�1

q21q
2
2

þ ðq21 þ q22Þðc1 � c�1Þ
q41q

4
2

þ 1

�
þ 1

q41q
4
2

	 X1
m¼3;5

mcm

#
b

ð56Þ

ð~rrxycÞ1 ¼
1

A1

ZZ
A0
1

Im
XðfÞ
X0ðfÞU0

1ðfÞ
"

þ W1ðfÞ
#
J dA0

1 ¼ b1

"
þ q21

�
þ 1

q21

	 X1
m¼3;5

mam

#
c

ð57Þ

ð~rrxycÞ2 ¼
1

A2

ZZ
A0
2

Im
XðfÞ
X0ðfÞU0

2ðfÞ
"

þ W2ðfÞ
#
J dA0

2

¼ 1

1þ 1
q2
1
q2
2

 !
d1

"
þ d1 þ d�1

q21q
2
2

þ ðq21 þ q22Þðc1 � c�1Þ
q41q

4
2

þ 1

�
þ 1

q41q
4
2

	 X1
m¼3;5

mcm

#
c

ð58Þ

where the subscripts a, b and c refer to the three fundamental problems; J is the Jacobian:

J ¼ q þ 1

q3
� 2

q
cos 2h ð59Þ

Substituting Eqs. (53)–(58) into Eqs. (19) and (20), then into Eqs. (11) and (12), we obtain two equations

to determine the effective moduli B3 and G3. It is noted that Bi is related to ji:

Bi ¼
2Gi

ji � 1
; i ¼ 1; 2; 3 ð60Þ

Since the coefficients of the complex potentials expansions contain the as-yet-unknown moduli B3 and
G3, the two equations are implicit ones, which must be solved simultaneously with Eqs. (A.1)–(A.6). Taking
Voigt approximation as the initial value of iteration, the equations converge rapidly and steadily. Voigt

approximation is as follows:

B3 ¼ kB1 þ ð1� kÞB2 ð61Þ

G3 ¼ kG1 þ ð1� kÞG2 ð62Þ

5. Prediction of the longitudinal tension and shear moduli, and major Poisson’s ratio

The method developed in the preceding sections can be extended to estimate the effective longitudinal
tension modulus EL3, major Poisson�s ratio mLT3 and longitudinal shear modulus GLT3 of fiber-reinforced
composites, which will be briefly described in this section.
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The effective longitudinal tension modulus EL3 and major Poisson�s ratio mLT3 can be predicted by
considering a ‘‘modified plane strain’’ problem. We assume that a longitudinal (axial) force is applied to the

three-phase confocal elliptical cylinder model so that the longitudinal strain of the model is a constant e1ZZ .
If various phases of the model are not restrained, the transverse strains should be

eXX1 ¼ �mLT1e
1
ZZ ; eXX2 ¼ �mLT2e

1
ZZ ; eXX3 ¼ �mLT3e

1
ZZ ð63Þ

where subscripts 1, 2 and 3 refer to the fiber, matrix and composite, respectively. In this imaginary case, the
in-plane (transverse) displacements of the separate phases can be written as

ðuþ ivÞ10 ¼ �mLT1e
1
ZZz; ðuþ ivÞ20 ¼ �mLT2e

1
ZZz; ðuþ ivÞ30 ¼ �mLT3e

1
ZZz ð64Þ

where they are cast into complex form for the convenience of analysis, and z ¼ xþ iy.
When the separate phases are combined together, a mismatch of the displacements occurs, which leads

to the internal boundary conditions of in-plane stresses and displacements on the interfaces L1 and L2 (refer
to Fig. 1):

ðuþ ivÞ1 ¼ ðuþ ivÞ2 � ðmLT2 � mLT1Þe1ZZz; ðFx þ iFyÞ1 ¼ ðFx þ iFyÞ2 on L1 ð65Þ

ðuþ ivÞ2 ¼ ðuþ ivÞ3 � ðmLT3 � mLT2Þe1ZZz; ðFx þ iFyÞ2 ¼ ðFx þ iFyÞ3 on L2 ð66Þ
In this case the in-plane stress at infinity should vanish, so we have the remote field conditions

r1
XX ¼ r1

YY ¼ r1
XY ¼ 0 ð67Þ

The modified in-plane problem produced by the longitudinal force can be solved by a similar method

given in the preceding sections. To give the prediction of the effective longitudinal modulus EL3 and major
Poisson�s ratio mLT3, two additional equations are required. Considering the relation of stresses and strains
in the representative unit cell and averaging over the fiber section orientation, we can obtain two additional

equations:

EL3 ¼ kEL1 þ ð1� kÞEL2 þ kmLT1
ð~rrXX þ ~rrYY Þ1

e1ZZ
þ ð1� kÞmLT2

ð~rrXX þ ~rrYY Þ2
e1ZZ

ð68Þ

mLT3 ¼ kmLT1 þ ð1� kÞmLT2 � k
ð~rrXX þ ~rrYY Þ1
4B1e1ZZ

� ð1� kÞ ð~rrXX þ ~rrYY Þ2
4B2e1ZZ

ð69Þ

The effective longitudinal shear modulus GLT3 of fiber-reinforced composites can be predicted by con-
sidering a remote antiplane loading. The antiplane displacement w, antiplane shear stress components rxz
and ryz can be expressed by an analytical function f ðzÞ:

w ¼ Re½f ðzÞ� ð70Þ

rxz � iryz ¼ GLTf 0ðzÞ ð71Þ
This is a simpler problem than the in-plane problem. Similarly, the problem can be solved by using the

conformal mapping technique integrated with the Laurent series expansion technique and the detail refers

to Jiang and Cheung (1998).

6. Fiber distribution function

Recently, Hu and Weng (2000a,b) shed light on connections between several commonly used microm-
echanics models as well as the inclusion distribution functions in three-phase models. In the three-

dimension case, the inclusions are taken to be ellipsoidal, and the spatial distribution of inclusions is also
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taken to be ellipsoidal. The distribution ellipsoid is defined from the conditional probability density

function that an inclusion centered at one point given that there is an inclusion centered at another

point.

The outer elliptical contour L2 (Fig. 1) of the three-phase confocal elliptical cylinder model (two-
dimension problem) represents also the fiber distribution function. An important problem is whether the

shape of the distribution ellipse depends on the fiber volume fraction k while holding the fiber section aspect
ratio ðc1 ¼ b1=a1Þ fixed.
To answer this problem, consider two extreme cases. One is the case of k ! 0. As shown in Fig. 3a, at a

very low volume fraction of fibers, the fiber section shape has little influence on the distribution function of

fibers. For an isotropic fiber distribution in a statistical sense, the distribution function can be defined by a

circle, or more exactly, by an ellipse of c2 ¼ b2=a2 ! 1, where a2 and b2 are the semimajor and semiminor
axes of the outer elliptical contour L2. However, at a relatively high volume fraction of fibers, the distri-
bution circle may fail to enclose completely the fiber (section) as shown in Fig. 3b. As a consequence, the

predictions for effective moduli may fall outside the Hashin–Shtrikman�s bounds (refer to Hu and Weng,
2000a,b). Apparently, in this case, the distribution function defined by a circle is improper, instead, a

distribution ellipse should be taken. Further examine the extreme case of k ! 1. As shown in Fig. 3c, in this

case, the interphase (matrix) of the three-phase model becomes very small, so L2 approaches to L1, and
c2 ! c1. It is concluded that the aspect ratio c2 of the distribution ellipse does depend on the fiber volume
fraction k while holding the fiber section aspect ratio c1 fixed, and c2 varies from 1 to c1 as k goes up from 0
to 1.
Go back to the three-phase confocal elliptical model. From Eq. (28), it is seen that

ck ¼
bk
ak

¼ q2k � 1
q2k þ 1

; k ¼ 1; 2 ð72Þ

then from Eq. (29) and (72), it follows

c2 ¼
ðc21 � 1Þk þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc21 � 1Þ

2k2 þ 4c21
q
2c1

ð73Þ

The variations of c2 with k are depicted in Fig. 4 for several given values of c1. It is seen that c2 varies
from 1 to c1 as k goes up from 0 to 1. Eq. (73) and Fig. 4 indicate that the three-phase confocal elliptical
model reasonably reflects the dependence of the distribution function of fibers on the volume fraction of

fibers.

Fig. 3. The distribution function of fibers: (a) circular distribution at a very low volume fraction; (b) circular distribution at a relatively

high volume fraction; (c) elliptical distribution at a very high volume fraction.
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7. Other micromechanics methods

It is of interest to make a full comparison among various micromechanics predictions and with Hashin

and Shtrikman�s upper and lower bounds. The other micromechanics methods that have received the most
attention and used are the dilute, self-consistent, Mori–Tanaka and differential methods. These methods

have been developed for monotonically aligned fiber-reinforced composites. In this section, they will be

extended to cover the case with transversely randomly oriented elliptical fibers. (Note such an extension of

the Mori–Tanaka method given by Zhao and Weng, 1990.)
In formulating the micromechanics theories, it is convenient to adopt matrix notations, which are de-

noted by bold letters. The matrix equation for predicting the effective moduli of two-phase perfectly bonded

fiber-reinforced composites can be written as (for example, refer to Dunn and Taya, 1993)

M3 ¼ M2 þ kðM1 �M2ÞA ð74Þ

whereM1,M2 andM3 denote the moduli matrices of the fiber, matrix and composite, respectively. A is the

strain gradient concentration matrix, which relates the averaged strain gradient in the inclusion (fiber)
phase to that in the composite, i.e.

eZZ1 ¼ AeZZ3 ¼ AZ1 ð75Þ

where Z1 is the homogeneous far-field strain; eZZ1 and eZZ3 are the averaged strain of the fiber and composite,
respectively. For plane strain

Z ¼ ½ exx eyy exy �T ð76Þ

Let a composite with monotonically aligned fibers be subjected to homogeneous displacement boundary

conditions. Then the averaged strain of fibers in the local Cartesian coordinates (Fig. 1) can be expressed as

ðeZZ1Þloc ¼ AlocðZ1Þloc ¼ AlocQðbÞZ1 ð77Þ

where the subscript loc refers to the local Cartesian coordinates, so that Aloc, ðeZZ1Þloc and ðZ1Þloc are the
strain gradient concentration, averaged fiber strain and far-field strain matrices in the local coordinates,

respectively; QðbÞ is the transformation matrix from the global coordinate system to the local coordinate
system. For plane strain, QðbÞ is a third order matrix:

Fig. 4. Variations of the aspect ratio c2 of the distribution ellipse with the fiber volume fraction k for several given values c1 of the fiber
aspect ratio.
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QðbÞ ¼
cos2 b sin2 b sin 2b
sin2 b cos2 b � sin 2b
� sin 2b

2

sin 2b
2

cos 2b

24 35 ð78Þ

Consider the randomness of fiber section orientation in a statistical sense. Averaging of the fiber strain
over the orientation b in the global coordinate system yields

eZZ1 ¼ 1p
Z p

0

Qð�bÞðeZZ1Þloc db ¼ 1

p

Z p

0

Qð
�

� bÞAlocQðbÞdb
	
Z1 ð79Þ

A comparison between Eqs. (75) and (79) results in the strain gradient concentration matrix A in the
global coordinate system in a statistical sense:

A ¼ 1
p

Z p

0

Qð�bÞAlocQðbÞdb ð80Þ

It is seen that different micromechanics models may result in different approximations of Aloc:

(1) Dilute approximation. The key assumption made in the dilute approximation is that the interaction

among inclusions in the matrix-based composite can be ignored. The strain gradient concentration matrix

in the local coordinates can be expressed as (for example, see Dunn and Taya, 1993)

Adilloc ¼ ½Iþ S2M
�1
2 ðM1 �M2Þ��1 ð81Þ

where the superscript dil signifies the dilute approximation, I is the third order unit matrix, S2 is the matrix

representation of Eshelby�s tensor (Eshelby, 1957). In the case of an infinite matrix containing an elliptical
cylinder inclusion,

S2 ¼
1

2ð1� m2Þ

c1
2þ c1

ð1þ c1Þ
2
þ 1� 2m2
1þ c1

 !
c1

c1
ð1þ c1Þ

2
� 1� 2m2
1þ c1

 !
0

1

ð1þ c1Þ
2
� 1� 2m2
1þ c1

 !
1þ 2c1
ð1þ c1Þ

2
þ 1� 2m2
1þ c1

 !
0

0 0
1þ c21

ð1þ c1Þ
2
þ 1� 2m2

 !

26666666664

37777777775
ð82Þ

where m2 is Poisson�s ratio of matrix material and c1 is the aspect ratio of inclusion section.
(2) Self-consistent method. The essential assumption employed in the self-consistent method is that each

inclusion (fiber) is embedded in the equivalent medium with as-yet-unknown moduli. In this case

Ascloc ¼ ½Iþ S3M
�1
3 ðM1 �M3Þ��1 ð83Þ

It is seen that Eq. (83) is arrived at by replacing S2 andM2 for the matrix in Eq. (81) with S3 andM3 for the

composite.

(3) Differential scheme. The differential scheme can be regarded as an incremental form of the self-

consistent method. The essence of the method is the realizable construction of the final composite from the

matrix material through the successive replacement of an incremental volume of the current composite with

that of the reinforcement. According to Dunn and Taya (1993), we have

dM3ðkÞ
dk

¼ 1

1� k
½M1 �M3ðkÞ�AdifðkÞ ð84Þ

where the fiber volume fraction k is taken as a variable, AdifðkÞ is computed as in the self-consistent method.
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(4) Mori–Tanaka method. The key assumption in the Mori–Tanaka (1973) method is that a single in-

clusion is embedded in an infinite matrix subjected to an applied remote field equal to the as-yet-unknown

averaged strain (stress) field in the matrix. According to Dunn and Taya (1993),

AMT ¼ Adil½kAdil þ ð1� kÞI��1 ð85Þ

Adil in Eq. (85) is computed as in the dilute approximation.

8. Numerical results and comparison

In this section, a full numerical comparison of the developed generalized self-consistent method to other

micromechanics methods are made. Hashin–Shtrikman�s bounds are also used to examine the accuracy of
various micromechanics methods.

Consider glass/epoxy composite with the constituent material properties:

E1 ¼ 72:4 GPa; m1 ¼ 0:2; E2 ¼ 2:76 GPa; m2 ¼ 0:35 ð86Þ

where the subscripts 1 and 2 refer to the glass fiber and epoxy matrix, respectively.

By the well-known relations

B ¼ E
2ð1þ mÞð1� 2mÞ ; G ¼ E

2ð1þ mÞ ð87Þ

it is easy to obtain

B1 ¼ 50:3 GPa; G1 ¼ 30:2 GPa; B2 ¼ 3:41 GPa; G2 ¼ 1:02 GPa ð88Þ

The variations of the effective in-plane bulk, in-plane shear and longitudinal shear moduli with the fiber

volume fraction are plotted in Fig. 5, where the fiber aspect ratio c1 ¼ 0:3 for various micromechanics
methods and Hashin–Shtrikman�s bounds are suitable for all shapes. It is seen that the predictions of the
present method and Mori–Tanaka method are in excellent agreement. The self-consistent and differential
methods (especially, the former) give much higher predictions, whereas the dilute approximation gives

much lower predictions. It is not surprising considering the self-consistent method overestimates the in-

clusion interaction, whereas the dilute approximation ignores it. Form Fig. 5 it is also seen that in a large

range of variations in the fiber volume fraction k, the predictions by the dilute approximation fall outside
Hashin–Shtrikman�s lower bound. The results by the dilute approximation may be unacceptable. Some
predictions by the self-consistent method fall outside Hashin–Shtrikman�s upper bound, and the accuracy
of the method is also suspicious.

By using the Mori–Tanaka method (1973), Huang and Hu�s model (1995) and the present model, the
variations of the in-plane bulk modulus and of the transverse shear modulus with fiber aspect ratio c1 are
shown, respectively, in Fig. 6a and b for two different fiber volume fraction, k ¼ 0:4 and k ¼ 0:6. The three
methods all indicate that as c1 > 0:5, c1 has little influence on the effective moduli. However, as c1 < 0:5,
especially c1 < 0:3, it has a strong influence on the effective moduli. As c1 > 0:5, the three methods give
almost identical effective shear modulus, whereas the Mori–Tanaka method gives slightly low shear

modulus. As c1 < 0:5, Huang and Hu�s model provides higher estimates of the effective moduli, and the
series solution of the model diverges as c1 < 0:1. In the range of variations in the fiber aspect ratio of
engineering composites, the results predicted by the present model and Mori–Tanaka method are in rea-
sonable agreement. However, in the limit case of c1 ! 0, the two methods will give significantly different
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results. This is an open problem of theoretical interest yet, though it may fall outside practical application
limits.

Fig. 5. Comparisons of micromechanics methods (c ¼ 0:3): (a) in-plane bulk modulus; (b) in-plane shear modulus; (c) longitudinal
shear modulus.

Fig. 6. Variations of in-plane effective moduli with aspect ratio c: (a) in-plane bulk modulus; (b) in-plane shear modulus.
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Numerical results show that the generalized self-consistent method is well suited for commonly coun-

tered range of fiber behavior. The method can provide reasonable results for a full range of variations in

fiber aspect ratios (from circular fiber to ribbons) and for a complete spectrum of fiber volume fractions

(from 0 to 1, and the latter limit case shows the correct asymptotic behavior in the fully packed case), for
extreme types of the inclusion phase (from voids to rigid inclusions). Two extreme cases of fibers, i.e. tunnel

voids and rigid fibers are taken as the illustrative examples: Fig. 7 shows the variations of the effective

moduli with the aspect ratio of elliptical voids; Fig. 8 shows the variations of the effective moduli with the

aspect ratio of rigid inclusions.

It is of interest to examine the sensitivity of the five effective material constants to the fiber section aspect

ratio. Define aspect influence factors as

FB ¼ B
B0

; FGT ¼ GT
GT0

; FEL ¼ EL
EL0

; FmLT ¼ mLT
mLT0

; FGLT ¼ GLT
GLT0

ð89Þ

where GT denotes the transverse shear modulus, in instead of G in Sections 2–4, the subscript 0 refers to the
value of the modulus for c ¼ 1, i.e. for the circular section fiber.

Fig. 7. Variations of in-plane effective moduli with aspect ratio c for voids (m2 ¼ 0:35): (a) in-plane bulk modulus; (b) in-plane shear
modulus.

Fig. 8. Variations of in-plane effective moduli with aspect ratio c for rigid fibers (m2 ¼ 0:3): (a) in-plane bulk modulus; (b) in-plane shear
modulus.
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The variations of the aspect influence factors of the five material constants with the fiber section aspect
ratio are plotted in Fig. 9, where the properties of the constituent materials are taken as

k ¼ 0:4; E1 ¼ 413:69 GPa; m1 ¼ 0:2; E2 ¼ 4:1369 GPa; m2 ¼ 0:35 ð90Þ

It is seen that the variations of various curves are very different. FEL and FmLT are almost horizontal

curves, which indicate that the fiber shapes need not be considered in estimating the effective longitudinal
tension modulus and major Poisson�s ratio. FGLT varies the most dramatically, which indicate that the
aspect influence factor must be considered in estimating the effective longitudinal shear modulus.

Referring to Whitney and Riley (1966), experimental results on boron fiber reinforced composites in-

dicate reasonable agreement with theory for longitudinal and transverse moduli, whereas very poor

agreement with theory is obtained in the case of shear modulus. To yield reasonable predictions, semi-

empirical equations, such as the widely used Halpin–Tsai equations (for example, see Jones and Devens,

1999) are introduced, where some constants must be determined by experiments. From Fig. 5 in Whitney

and Riley (1966) it is observed that the shape of fiber section of the specimens are irregular, however, a
theoretical model of circular section fiber is taken. The circular fiber model can provide accurate predictions

for the longitudinal tensile modulus, but underestimates the effective longitudinal shear modulus. This is

why their theoretical predictions for the latter are much lower than the experimental results. In fact, if the

fiber section shape is taken as an equivalent ellipse with the aspect ration c � 0:4, the theoretical predictions
will be in reasonable agreement with the experiments.

9. Conclusion

A three-phase confocal elliptical cylinder model is proposed for fiber-reinforced composites. Based on

this model, the generalized self-consistent method is extended to cover the case of elliptical section fibers

oriented transversely randomly. The reasonableness of the fiber distribution function in the three-phase

confocal elliptical cylinder model is shown.

Using the conformal mapping technique integrated with the Laurent series expansions, the analytical

solutions for relevant plane strain, modified plane strain and longitudinal shear problems are obtained. The

algebraic equations are established for predicting all the five effective moduli of fiber-reinforced composites,
accounting for randomness in distribution and section orientation of fibers in a statistical sense.

Fig. 9. Aspect influence factors of various effective moduli (k ¼ 0:4).
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The extended generalized self-consistent method provides convergent and reasonable results for a full

range of variations in fiber section shape (from circular fibers to ribbons), for a complete spectrum of the

fiber volume fraction (from 0 to 1, and the latter limit shows the correct asymptotic behavior in the fully

packed case) and for extreme types of inclusion phases (from voids to rigid inclusions).
The dilute, self-consistent, differential and Mori–Tanaka methods are also extended to cover the case of

transversely randomly oriented fibers. A comparison of the generalized self-consistent method with the four

micromechanics methods and with Hashin–Shtrikman�s bounds is made. It is seen that the generalized self-
consistent method and Mori–Tanaka method provide very close predictions, whereas other method,

especially the dilute approximation and self-consistent method, lead to significant deviations. Most pre-

dictions by the dilute approximation and some predictions by the self-consistent method fall outside

Hashin–Shtrikman�s bounds, and the accuracy of the two methods (especially the former) are suspicious.
A very different dependence of the five effective moduli on fiber section shape is theoretically predicted,

and it provides a reasonable explanation on the poor correlation between previous theory and experiment

in the case of longitudinal shear modulus. Such a study is of importance in improving accuracy in mi-

cromechanics predictions.

The three-phase confocal elliptical cylinder model can also serve as an inclusion/interphase layer/matrix

model, in terms of which, the stress concentration in such microstructures can be investigated (refer to Ru

et al., 1999; Wu and Du, 2000; Jiang and Cheung, 2001). This work will be left for readers.
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Appendix A. The algebraic equation to determine the expansion coefficients of the complex potentials

p12
q2m1

�
� s12

m
q21

	
am � s12bm �

p22
q2m1
c�m � s12 q21

�
þ 1

q21

	 X2M�1

k¼mþ2;mþ4
kak ¼ 0 ðA:1Þ

ðp12q2m1 � s12mq21Þam � s12bm � p22q2m1 cm � s12 q21

�
þ 1

q21

	 X2M�1

k¼mþ2;mþ4
kak ¼ 0 ðA:2Þ

q21
q2m1

�
þ p21

m
q21

	
am þ p21bm � p22

m
q21
cm � p22dm �

q21
q2mþ41

�
� p21ðmþ 2Þq21

�
amþ2 � p21bmþ2

� p22ðmþ 2Þq21cmþ2 ¼ 0 ðA:3Þ

q21q2m1

�
� p21

m
q21

	
am þ p21bm þ p22

m
q21
c�m � p22d�m � ½q21q2m�41 þ p21ðm� 2Þq21�am�2 � p21bm�2

þ p22ðm� 2Þq21c�ðm�2Þ ¼ 0 ðA:4Þ

p32
m
q22
cm þ

q32
q2m2
c�m þ p32dm þ p32ðmþ 2Þq22cmþ2 þ

q32
q2mþ42

c�ðmþ2Þ ¼ d1mp33
e1
q22

�
þ f1

	
ðA:5Þ
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p23q2m2 cm þ s23
m
q22
c�m � s23d�m � p23q2m�42 cm�2 þ s23ðm� 2Þq22c�ðm�2Þ þ d1m

p23
q22
c�1

(
� s23

1

q22
c1

"
þ
X2M�1

k¼1;3
dk

þ q22

�
þ 1

q22

	 X2M�1

k¼3;5
kck

#)
¼ d1mp33q22e1 � d3mp33q22e1 ðA:6Þ

where m ¼ 1; 3; . . . ; 2M � 1, which leads to 6M equations; pij, qij and sij refer to Eq. (52); a�1 ¼ a1, the
unknown coefficients with a subscript larger than 2M � 1 are taken as zero; dij is the Kronecker notation

dij ¼
0; i 6¼ j
1; i ¼ j

�
ðA:7Þ
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