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Abstract

A three-phase confocal elliptical cylinder model is proposed for fiber-reinforced composites, in terms of which a
generalized self-consistent method is developed for fiber-reinforced composites accounting for variations in fiber section
shapes and randomness in fiber section orientation. The reasonableness of the fiber distribution function in the present
model is shown. The dilute, self-consistent, differential and Mori-Tanaka methods are also extended to consider
randomness in fiber section orientation in a statistical sense. A full comparison is made between various microme-
chanics methods and with the Hashin and Shtrikman’s bounds. The present method provides convergent and rea-
sonable results for a full range of variations in fiber section shapes (from circular fibers to ribbons), for a complete
spectrum of the fiber volume fraction (from 0 to 1, and the latter limit shows the correct asymptotic behavior in the fully
packed case) and for extreme types of the inclusion phases (from voids to rigid inclusions). A very different dependence
of the five effective moduli on fiber section shapes is theoretically predicted, and it provides a reasonable explanation on
the poor correlation between previous theory and experiment in the case of longitudinal shear modulus.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The determination of the effective moduli of composites has been widely investigated and several mi-
cromechanics approaches have been developed, which significantly improved the initial predictions. The
dilute, self-consistent, differential and Mori-Tanaka methods are the micromechanics methods that have
been extensively used, and they are all based on the two-phase model. The essential assumption in the dilute
model is that a single inclusion is embedded in an infinite matrix subjected to a remote loading in the
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Nomenclature

Ay,A4,,A5 area of the fiber, matrix and composite in a three-phase model

Ly,L, the interface contour between the fiber, matrix and composite

u,v in-plane displacement components

F.,F, components of the in-plane stress resultants

OXY,Oxy global and local Cartesian coordinate systems

p angle made by the X-axis and x-axis

0,,0, common foci of elliptical contours L, and L,

g;,&; stress and strain components

B,G(Gt),EL, GL1,viT in-plane volume and shear moduli, longitudinal tensile and shear moduli, major
Poisson’s ratio of a transversely isotropic material

K material constant, k = 3 — 4v for plane strain and x = (3 — v)/(1 + v) for plane stress, where v
is Poisson’s ratio
A fiber volume fraction

71,7,  aspect ratio of elliptical contours L; and L,
ay, by, ay, by semimajor axes and semiminor axes of L; and L,

z,{ complex variable in physical plane and mapping plane
Q({) mapping function
R a constant in the mapping function

Ay, A5, A image of 4y,4,,4;

Ly, L, L, image of Oy,0,,L;,L,

Pos P1, P> radii of Ly, L7, L)

p,0 polar coordinates in the {-plane

¢©*(2),y"(z) in-plane complex potentials in the physical plane (z-plane)
©(0),¥({) in-plane complex potentials in the mapping plane ({-plane)
@), Y(0),w({) defined by Egs. (35) and (36)

Ay by Couy Aoy €y fra coeflicients of Laurent series

Dij» 4,5, constants defined by Eq. (52)

Jacobian

antiplane displacement

complex potential for antiplane strain

moduli matrices

strain gradient concentration matrix

strain vector

far-field strain vector

transformation matrix

third order unit matrix

subscript refers to the local Cartesian coordinates
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QU L)Y [IMT superscripts refer to dilute approximation, self-consistent method, differential
scheme and Mori-Tanaka method, respectively

‘las [lys [ ] subscripts refer to the three fundamental problems defined by Eqs. (16)—(18), respectively

} It [, [']; subscripts refer to fiber, matrix and composite, respectively

]

superscript denotes the derivative with respect to the argument
above sign denotes averaging
[ above sign denotes complex conjugate
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composites. The essential assumption in the self-consistent model is that a single inclusion is embedded in
an infinite equivalent medium of the composites. Obviously, the dilute model ignores the inclusion inter-
action, while the self-consistent model overestimates it. The two models have traditionally received criticism
on their accuracy. As an incremental form of the self-consistent method, the differential method does not
exhibit the intuitively unacceptable results of the self-consistent method. However, it may lead to non-
unique solutions (Norris, 1985). The key assumption in the Mori-Tanaka method is that a single inclusion
is embedded in an infinite matrix subjected to an applied remote field equal to the as-yet-unknown average
stress (strain) field in the matrix, and the method considerably improved the accuracy of the dilute method
(Mori and Tanaka, 1973; Taya and Chou, 1981; Benveniste, 1985; Zhao and Weng, 1990). The pros
and cons of the Mori-Tanaka method have been discussed by Christensen (1990) and Christensen et al.
(1992).

The generalized self-consistent method is a more sophisticated micromechanics approach (Christensen
and Lo, 1979; Luo and Weng, 1987; Christensen, 1993; Huang and Hu, 1995; Jiang and Cheung, 1998,
2001; Riccardi and Montheilet, 1999; Jiang et al., 2001). Different from the aforementioned microme-
chanics methods based on the two-phase model, the generalized self-consistent method is based on a three-
phase model: an inclusion is embedded in a finite matrix, which in turn is embedded in an infinite composite
with the as-yet-unknown effective moduli. The generalized self-consistent method provides accurate pre-
dictions for extreme types of inclusions (i.e. voids and rigid inclusions), and the method also gives the
correct asymptotic behavior of composites as the inclusion volume fraction approaches 1 (fully packed). It
is shown that the results of the generalized self-consistent method have excellent agreement with the ex-
perimental data (for example, refer to Huang et al., 1994). The three-phase model is also used to improve
the accuracy of the Mori-Tanaka method (Luo and Weng, 1987).

However, most three-phase models can only accommodate cylindrical and spherical inclusions, and the
studies are still insufficient on the generalized self-consistent method accounting for inclusion shape vari-
ations. Huang and Hu (1995) proposed a three-phase elliptical inclusion model where surrounding elliptical
ring shares the same aspect ratio as the elliptical inclusion. They addressed the problem of an in-plane
isotropic distribution of elliptical inclusions. Riccardi and Montheilet (1999) developed a generalized self-
consistent method for solids containing randomly oriented spheroidal inclusions. Jiang and Cheung (1998)
proposed a three-phase confocal elliptical cylinder model for fiber-reinforced composites. They addressed
the problem of longitudinal shear, which is related to an effective modulus, i.e. the longitudinal shear
modulus of fiber-reinforced composites.

The objective of this work is to develop a systematic generalized self-consistent method for fiber-rein-
forced composites based on the three-phase confocal elliptical cylinder model, so that all the five effective
moduli can be reasonably predicted and the convergence of solutions can be guaranteed in various practical
cases. Using the conformal mapping technique integrated with the Laurent series expansion, the analytical
solutions for relevant plane strain, modified plane strain and longitudinal shear problems are derived. The
algebraic equations are established for predicting all the five effective moduli of fiber-reinforced composites,
accounting for the randomness in distribution and section orientation of fibers in a statistical sense. The
dilute, self-consistent, Mori-Tanaka and differential methods are the micromechanics methods were first
developed for monotonically aligned fiber-reinforced composites. In this paper the four micromechanics
methods are also extended to cover the case of transversely randomly oriented fibers. (Note such an ex-
tension of the Mori-Tanaka method given by Zhao and Weng, 1990.) Thus a full comparison is made
among various micromechanics methods and with Hashin and Shtrikman’s upper and lower bounds
(Hashin and Shtrikman, 1963).

Hu and Weng (2000a,b) shed light on the connections between several commonly used micromechanics
models as well as the inclusion distribution functions in three-phase models. In this paper, the dependence
of the distribution functions on the volume fraction is examined, and the reasonableness of the fiber dis-
tribution function in the three-phase confocal elliptical cylinder model is shown.
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Finally the sensitivity of the five effective moduli to fiber shapes is examined. The study is useful in
designing fiber-reinforced composites based on a fundamental understanding of the relation between the
macroscopic properties and microstructures of composites.

2. Description of the plane strain problem

First, the plane strain problem of the three-phase confocal elliptical cylinder model is studied, which is
related to the prediction of two effective moduli, i.e. the in-plane bulk and transverse shear moduli of fiber-
reinforced composites. Fig. 1 is a schematic diagram of the model. The elliptical region 4, encircled by the
contour L; represents the fiber cross-section and the elliptical ring region 4, between L, and L, represents
the matrix in the representative unit cell. L; and L, share the common foci O; and O,. The infinite region A3
outside L, represents the equivalent medium of the composite with the as-yet-unknown effective elastic
moduli, and the composite is transversely isotropic in a statistical sense. Building a local Cartesian coor-
dinate system Oxy along the principal axes of the confocal ellipses, then the continuity conditions of the
displacements and stresses on L; and L, can be expressed as

(u+iv), = (u+1iv),, (K +iF), = (K +1iF), on L (1)

(utiv), = (utivhy, (F+iF),= (K +iF), on L 2)

where u and v are the displacement components and F, and F, are the components of the stress resultants
along any arc on L; or L,; the subscripts 1, 2 and 3 refer to the fiber, matrix and equivalent medium of the
composite in the three-phase model. Egs. (1) and (2) have been cast in complex form for the convenience of
analysis.

Letting OXY be the global Cartesian coordinate system and f be the angle made by the X-axis and x-axis
(Fig. 1), we can write

P 0 Ty~ Om o 2B — 6y, sin2f (3)
2 2
Oy + 0 Oy — Ox .
oy == 5 cos 2B + oy, sin 28 (4)
Oxy = —% $in 2B + 0, cos 28 (5)

Fig. 1. Schematic diagram of the three-phase confocal elliptical cylinder model.
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where (oxy, 0y, 0xy) and (0., 0,y, 0y,) are the stress components in the global and local Cartesian coor-
dinates, respectively.

The effective moduli of composites can be derived by considering the volume average of the stress and
strain fields. Letting B; be the effective in-plane bulk modulus and G; be the effective transverse shear
modulus, we have

6XY = 2G3§X}/ (7)

where ¢yy, éyy, &xy are the in-plane strain components in the global Cartesian coordinates; the above wave
sign “~”" denotes averaging.

According to the generalized self-consistent method, the volume fraction of the fiber in a representative
unit cell (1) is equal to that of the whole composite, so we have

A b
| — 1L daih (8)
A +4  axb,
where (a;,b;) and (a,, b,) are the semimajor axes and semiminor axes of L; and L,, respectively. According

to the generalized self-consistent method, Eqs. (6) and (7) hold for a representative unit cell. For the unit
cell, the averaged stresses of the left-hand sides of the two equations can be expressed as

(Gxx +0yy) = A0xx + Gvy), + (1 — A)(Gxx + Gwy), 9)
Gxy = A(Gxy); + (1 = A)(Gxr), (10)

Analogous averaged strain expressions of the right-hand sides of Egs. (6) and (7) can be arrived at. Thus,
Egs. (6) and (7) can be written as

}v(&XX —|—5'yy)1 + (1 — )v)(&XX + &YY)Z :B[;(éxx +6'Yy)1 + (IB_ )V) (&XX +6'YY)2 (11)
Haw), + (1= Gw), = 6| & @), + U 52 G| (12)

Obviously, the key work is to determine the averaged stress fields. Averaging of the stress fields should be
taken over the region under consideration, as well as over the orientation 5, which is based on the as-
sumption of statistical uniformity.

~ 1 2n
GUZZTC—A‘/O\/AO-UdAdﬁ I,J:X7Y (13)

where A4 is the area. For brevity, the conventional indicial notation of the stress is used.
It is seen from Egs. (11) and (12) that two kinds of remote uniform stress state in the global coordinates
should be considered to determine the two effective moduli B; and Gj:

(1) Remote biaxial tension
o5 =a% #£0, o =0 (14)
(2) Remote shear

oy =05 =0, a3 #0 (15)
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Substituting Egs. (3)-(5) into Eq. (13), it is seen that the double integral is uncoupled and the integral
over the orientation f§ can be completed in closed form. Thus, the work boils down to obtaining the stress
field of the following three fundamental problems in the local coordinate system (also consult Huang and
Hu, 1995):

(a) Remote unit biaxial tension

oy =ay=1, oy =0 (16)

In this case, the normal stresses are denoted by 6., and o,,.
(b) Remote unit biaxial tension/compression

a)f?:—af;:—l, 0;);:0 (17)

In this case, the normal stresses are denoted by o, and .
(¢) Remote unit shear

o =07 =0, oF=1 (18)

xx xy

In this case, the shear stress is denoted by ..

Once the solutions to the three fundamental problems are available, the averaged stresses in Egs. (11)
and (12) (in the global coordinate system) can be obtained from the following equations:

(6'XX + &YY)k = (&'xxa + %a)kf’?} (19)
- 1 N 1 ~
(Oxv), = 2 (G — Guxt)i + B (Gue )i | Oy (20)

where the subscript £ = 1,2 refers to the fiber and matrix in a representative unit cell, and averaging of the
stresses for the three basic problems is taken only over the regions under consideration. (The orientation
averaging in a statistical sense has been finished.)

3. Complex potentials solutions of the fundamental problems

In formulating the fundamental problems, we use the two complex potentials ¢*(z) and " (z) (two
analytical functions, z = x +iy) of Muskhelishivili (1975). The stress components (6,y,6,y, 0y,), the dis-
placement components (u, v) and the components of the resultant stress (£, ;) in Cartesian coordinates are
related to ¢*(z) and ¥*(z) such that

Ox + 0y = 2|9 (2) + ¢ (2)] (21)
Oy = Oue 210y = 2[20"(2) + ()] (22)
26w+ iv) = k0 (2) 297 C) ~ V) (23)
(F+ i) = ~ilo"() + 207@) +97C) | (24)

where x = 3 — 4v for plane strain and x = (3 — v)/(1 + v) for plane stress, G and v are shear modulus and
Poisson’s ratio, respectively; the overbar represents the complex conjugate, the prime denotes differentiation
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with respect to the argument and [~]f signifies the change in the bracketed function in moving from point 4
to point B along any arc 4B.
To solve the problem, another complex variable

{=¢&+in=pe’ (25)
is introduced, where p and 0 are the polar coordinates in the complex {-plane. Making use of the conformal
transformation of the z-plane onto the {-plane (Muskhelishivili, 1975)

1
z:Q(C):R(C—i—Z) (26)
where R is a constant to be determined, the regions 4;, 4, and 45 (infinite region) divided by the imaginary
cut 0,0,, the elliptical contours L, L, in the z-plane (Oxy-plane, Fig. 1) are mapped onto the circular ring
regions A}, 45 and 4} divided by Lj, L} and L, with radii p, =1, p, and p, in the {-plane (Fig. 2), re-

spectively.
From this transformation, it is seen that
1 1Y .
x:R<p+)c050, y:R(p—) sin 0 (27)
p p
1 1
ax=Rlp,+— ), br=R|p.—— k=1,2 (28)
Pk Pk

Since the geometrical parameters of the fiber section, a; and b;, are known, R and p, can be determined
by using Eq. (28). The substitution of Eq. (28) into Eq. (8) yields
2 2
pi—1/p1
 — 29
R @)

in terms of which, p, can be determined as the volume fraction of fibers, A, is prescribed.
With the aid of Eq. (26), Eqgs. (21)—(24) can be written as

ax+ 0, = 2[2(() + @(0) (30)
|20 4
Oy — Op + 210y, = 2 Q,(C)@(Q—F () (31)

Fig. 2. Conformal mapping.
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26(u + iv) = xo(0) ~ QOB 90 (32)
FotiF, = ~i[o(0) + 2080 + 90| (33)
where
o) = o' (00, W(O) =¥ [) (34)
90 = #(O/20), PO =V (/) (35)
Letting
0(0) = 2076 +1°C) = 5 'O + (D) (36)

and substituting Egs. (32) and (33) into Egs. (1) and (2), the continuity conditions of the displacements and
stresses on L; and L, are expressed as

1

a['ﬂ@l(l) —o (0] = G (120, (0) = 22 (0)] (= pye? (37)
2O+ o1(0) =)+ () =pe’ (38)
GLZ [202(0) — 2 (0)] = G% [13005(0) — 3(0)] ¢ = pye” (39)
020+ 0 (0) = 03(O) + 03(0) (= pype (40)

where subscripts 1, 2 and 3 refer to the media in regions 4, A, and A3, respectively. It is important to note
that w({) is not an analytical function and its series expansion should be derived by Eq. (36) based on the
Laurent expansions of ¢({) and ({). First, we consider the symmetrical fundamental problems (a) and (b).
The analytical functions ¢,({) and ¥, ({) (k = 1,2,3) can be expanded into Laurent series

PO =3 @@+, Q) = 3 b+ (41)
m=1,3 m=1,3
o) = S (el e nl™, (1= = S (ol +d ™) (42)
m—13 m=1,3
g =el+ Y el (1= (0 = (ﬁc+ Zf;d’”) (43)
m=13 m=1,3

where each expansion contains only odd terms, and a,,, b,,, Cu, C_p» Ay, d_py €y fom, €1, f1 are real con-
stants by the consideration of symmetry. An observation upon Egs. (36)—(40) and the numerical compu-
tations shows that it is more efficient to use the Laurent expansions of (1 — {2)y,(¢) and (1 — {2)y,(0)
instead of those of ¥,({) and y,({), respectively. Since 0,0, is only an imaginary cut and ¢, (¢) and ()
should be holomorphic in the region A, such that

901<ei9) = @1(646% lﬁ](em) = lpl(eim) (44)

which leads to a_,, = a,,, b_,, = b,,. Besides the bounded stresses at infinity lead to e¢,, = f,, =0 as m > 2.
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By using the remote field conditions (16) and (17), we obtain

1
elzia flzo (45)
for the fundamental problem (a) and
e=0, fi=1 (46)

for the fundamental problem (b).

©.(0) and ¥, ({) (k= 1,2,3) for the antisymmetrical fundamental problem (c) have the same Laurent
expansions except that the unknown constants a,,, b,,, ¢, C—_m» Ay Ay €_py f-m» €1, f1 In Eqgs. (41)—(43) are
replaced by ia,, b, ic,, ic_,, id,, id_,, ie_,, if_,, e, if;. By using the remote field conditions (18), we
obtain

ey = Oa fl = 1 (47)
Letting the expansions of ¢,({) and ¥, ({) (k =1,2,3) are truncated at m = 2M — 1, there are 8M un-

known constants to be determined. After some arrangement, the continuity conditions (37)—(40) can be
written as

P21 () = s201(0) = pe,(0) =0 [ =pe’ (48)

(1= )g2010) + oo () = poan(()] =0 = pe” (49)

(1= ) pn02(0) = s:02(0) = pug3(0)) =0 (= pye” (50)

(1= ) 922050 + proa(Q) = puos(D)] =0 £ = pye” (51)
where

where ¢;; and s;; have sign (4) for the symmetrical fundamental problems (a) and (b), and sign (-) for the
antisymmetrical fundamental problem (c), respectively.

Substituting the expansions (41)—(43) truncated at m = 2M — 1 into Egs. (48)—(51), we obtain 8M linear
algebraic equations with respect to the 8M unknown constants. It is seen that e, and f,
(m=1,3,...,2M — 1) are easy to be expressed by the other unknown coefficients. Finally, we can obtain
6M equations to determine the remaining 6M unknown coefficients, and the equations are listed in Ap-
pendix A. Now the three fundamental problems have been formulated.

4. Prediction of the effective transverse moduli

To predict the effective transverse moduli of fiber-reinforced composites by using Egs. (11) and (12), we
must derive the detailed expression of the averaged stresses. Substituting Egs. (41)—(43) into Egs. (30) and
(31), then averaging over the corresponding regions, we can find that the averaged stresses in the three
fundamental problems are only related to some coefficients of the expansions of ¢,({) and v, ({)
(k=1,2,3):

(Gusa + ), :/% / /A Rel(2)]d4 :/;il / /A Rele, (Ol d4; = 4(a), (53)
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S , oty fp%
(Orva + Gpya)y = // Re[®,({)]Jd4, =4 (54)
02 a

PPy

1

2 2Q .
(O-yyb xxb)] _A //1 Re _Q’(é’) qj](c) + IIII(C) JdAl 2

1 o0
bi + <pf +;> > mam] (55)
1
b

(G — Gous), = AZZ // Re| 29 40y 4wy ()| sda,

d d 2 2 —cC_ 1 =
i+ 1-i2-2 1+(p1+p2)(01 ¢ 1)-|- <l+ﬂ) chm‘| (56)
1
b

pip3 P13

G =1 [[ | G ol0+ w0 |sa -

by + (p? +i2> f: mam] (57)

(600), // i | 2 g10) + wa(0)|

()l A B

where the subscripts a, b and ¢ refer to the three fundamental problems; J is the Jacobian:

1 2.2 T4

di +d_ " (T + p3)(c1 — ) <
P1P3 P1P>

1 2
J=p+———cos20 (59)
P> p

Substituting Eqs. (53)-(58) into Egs. (19) and (20), then into Egs. (11) and (12), we obtain two equations
to determine the effective moduli B; and Gs. It is noted that B; is related to x;:
2G;

B, = d i=1,2
i K,‘*17 l I 73 (60)

Since the coefficients of the complex potentials expansions contain the as-yet-unknown moduli B; and
G3, the two equations are implicit ones, which must be solved simultaneously with Egs. (A.1)—(A.6). Taking
Voigt approximation as the initial value of iteration, the equations converge rapidly and steadily. Voigt
approximation is as follows:

By =B, + (1 — J)B; (61)

G; = AG, + (1 = )G, (62)

5. Prediction of the longitudinal tension and shear moduli, and major Poisson’s ratio

The method developed in the preceding sections can be extended to estimate the effective longitudinal
tension modulus E};, major Poisson’s ratio v r; and longitudinal shear modulus Gr1; of fiber-reinforced
composites, which will be briefly described in this section.
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The effective longitudinal tension modulus Ep; and major Poisson’s ratio vir; can be predicted by
considering a “modified plane strain” problem. We assume that a longitudinal (axial) force is applied to the
three-phase confocal elliptical cylinder model so that the longitudinal strain of the model is a constant &,.
If various phases of the model are not restrained, the transverse strains should be

exx1 = —VLTIEy,, &xx2 = —VLT28y,, &xx3 = —VLT3éy, (63)
where subscripts 1, 2 and 3 refer to the fiber, matrix and composite, respectively. In this imaginary case, the
in-plane (transverse) displacements of the separate phases can be written as

(u+1v),y = —vingyyz, (W+1iv),, = —vimeyz, (U +1v)3 = —Virsénz (64)

where they are cast into complex form for the convenience of analysis, and z = x + iy.

When the separate phases are combined together, a mismatch of the displacements occurs, which leads
to the internal boundary conditions of in-plane stresses and displacements on the interfaces L; and L, (refer
to Fig. 1):

(u+iv), = (u+1iv), — (vur2 — vim)eyyz, (B +iF), = (K +iF), on L (65)

(u+iv), = (u+iv); — (s —vim)ezz, (i +1iF), = (K +iF); on L, (66)
In this case the in-plane stress at infinity should vanish, so we have the remote field conditions
o =% =03 =0 (67)

The modified in-plane problem produced by the longitudinal force can be solved by a similar method
given in the preceding sections. To give the prediction of the effective longitudinal modulus E;; and major
Poisson’s ratio vy 13, two additional equations are required. Considering the relation of stresses and strains
in the representative unit cell and averaging over the fiber section orientation, we can obtain two additional
equations:

: Gxx + 6 (G té

EL3 = AELl —+ (1 — /I)ELz + ivLTl w —+ (1 — A)VLTQM (68)
77 77

virs = Avern 4 (1 — 2)virs — AM (11— A)M (69)

4B1 S%CZ 4328%%

The effective longitudinal shear modulus Grt; of fiber-reinforced composites can be predicted by con-
sidering a remote antiplane loading. The antiplane displacement w, antiplane shear stress components o,
and o), can be expressed by an analytical function f(z):

w = Relf(2)] (70)

zefi()'y_,: GLTf,(Z) (71)

This is a simpler problem than the in-plane problem. Similarly, the problem can be solved by using the
conformal mapping technique integrated with the Laurent series expansion technique and the detail refers
to Jiang and Cheung (1998).

6. Fiber distribution function
Recently, Hu and Weng (2000a,b) shed light on connections between several commonly used microm-

echanics models as well as the inclusion distribution functions in three-phase models. In the three-
dimension case, the inclusions are taken to be ellipsoidal, and the spatial distribution of inclusions is also
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taken to be ellipsoidal. The distribution ellipsoid is defined from the conditional probability density
function that an inclusion centered at one point given that there is an inclusion centered at another
point.

The outer elliptical contour L, (Fig. 1) of the three-phase confocal elliptical cylinder model (two-
dimension problem) represents also the fiber distribution function. An important problem is whether the
shape of the distribution ellipse depends on the fiber volume fraction 4 while holding the fiber section aspect
ratio (y, = by /a;) fixed.

To answer this problem, consider two extreme cases. One is the case of 4 — 0. As shown in Fig. 3a, at a
very low volume fraction of fibers, the fiber section shape has little influence on the distribution function of
fibers. For an isotropic fiber distribution in a statistical sense, the distribution function can be defined by a
circle, or more exactly, by an ellipse of y, = by/a, — 1, where a, and b, are the semimajor and semiminor
axes of the outer elliptical contour L,. However, at a relatively high volume fraction of fibers, the distri-
bution circle may fail to enclose completely the fiber (section) as shown in Fig. 3b. As a consequence, the
predictions for effective moduli may fall outside the Hashin—Shtrikman’s bounds (refer to Hu and Weng,
2000a,b). Apparently, in this case, the distribution function defined by a circle is improper, instead, a
distribution ellipse should be taken. Further examine the extreme case of A — 1. As shown in Fig. 3c, in this
case, the interphase (matrix) of the three-phase model becomes very small, so L, approaches to L;, and
v, — 7. It is concluded that the aspect ratio y, of the distribution ellipse does depend on the fiber volume
fraction 4 while holding the fiber section aspect ratio y, fixed, and y, varies from 1 to y, as 4 goes up from 0
to 1.

Go back to the three-phase confocal elliptical model. From Eq. (28), it is seen that

2

-1

p= =t k=12 (72)
k

then from Eq. (29) and (72), it follows

R = DA+ =12 +492
2y

Y2 = (73)

The variations of y, with 1 are depicted in Fig. 4 for several given values of y,. It is seen that y, varies
from 1 to y, as 4 goes up from 0 to 1. Eq. (73) and Fig. 4 indicate that the three-phase confocal elliptical
model reasonably reflects the dependence of the distribution function of fibers on the volume fraction of

OO~ 0€, 0@
@@@ @@@ @@@

(b) ()
Fig. 3. The distribution function of fibers: (a) circular distribution at a very low volume fraction; (b) circular distribution at a relatively
high volume fraction; (c) elliptical distribution at a very high volume fraction.
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Fig. 4. Variations of the aspect ratio y, of the distribution ellipse with the fiber volume fraction A for several given values y, of the fiber
aspect ratio.

7. Other micromechanics methods

It is of interest to make a full comparison among various micromechanics predictions and with Hashin
and Shtrikman’s upper and lower bounds. The other micromechanics methods that have received the most
attention and used are the dilute, self-consistent, Mori-Tanaka and differential methods. These methods
have been developed for monotonically aligned fiber-reinforced composites. In this section, they will be
extended to cover the case with transversely randomly oriented elliptical fibers. (Note such an extension of
the Mori-Tanaka method given by Zhao and Weng, 1990.)

In formulating the micromechanics theories, it is convenient to adopt matrix notations, which are de-
noted by bold letters. The matrix equation for predicting the effective moduli of two-phase perfectly bonded
fiber-reinforced composites can be written as (for example, refer to Dunn and Taya, 1993)

M; =M, + A(M; — M)A (74)

where M, M, and M; denote the moduli matrices of the fiber, matrix and composite, respectively. A is the
strain gradient concentration matrix, which relates the averaged strain gradient in the inclusion (fiber)
phase to that in the composite, i.e.

Z,=AZ; = AZ> (75)

where Z> is the homogeneous far-field strain; Z, and Z; are the averaged strain of the fiber and composite,
respectively. For plane strain

Z=[en g, gxy]T (76)

Let a composite with monotonically aligned fibers be subjected to homogeneous displacement boundary
conditions. Then the averaged strain of fibers in the local Cartesian coordinates (Fig. 1) can be expressed as

(Z1) e = Atoc(Z%) 0. = AicQ(B)Z™ (77)

where the subscript loc refers to the local Cartesian coordinates, so that Ay, (Z;),,, and (Z*),,, are the
strain gradient concentration, averaged fiber strain and far-field strain matrices in the local coordinates,
respectively; Q(f) is the transformation matrix from the global coordinate system to the local coordinate
system. For plane strain, Q(f) is a third order matrix:
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cos?f sin*p  sin2p

Q(B) = | sin®p cos’p —sin2p (78)

Consider the randomness of fiber section orientation in a statistical sense. Averaging of the fiber strain
over the orientation f§ in the global coordinate system yields

zi 1 [en@ias- (1 [ e-panenar)z: (19)

A comparison between Egs. (75) and (79) results in the strain gradient concentration matrix A in the
global coordinate system in a statistical sense:

A= [ e-paweips (50)

It is seen that different micromechanics models may result in different approximations of Ay,:

(1) Dilute approximation. The key assumption made in the dilute approximation is that the interaction
among inclusions in the matrix-based composite can be ignored. The strain gradient concentration matrix
in the local coordinates can be expressed as (for example, see Dunn and Taya, 1993)

A — 14 S,M; (M — M) (81)

loc

where the superscript dil signifies the dilute approximation, I is the third order unit matrix, S, is the matrix
representation of Eshelby’s tensor (Eshelby, 1957). In the case of an infinite matrix containing an elliptical
cylinder inclusion,

[ 249, 1-=2w 7 12w 1
N 3T 1 R 0
(1"’?1) 1+V1 (1"‘?1) 1+/1
1 1 1-2v, 142y, 1-2v,
S, = s - . 0
2(1 =) (I+y) 140 (I+p)° 1+n
1492
0 0 <+/12+1—2vz>
L (I+7y) i

(82)
where v, is Poisson’s ratio of matrix material and v, is the aspect ratio of inclusion section.
(2) Self-consistent method. The essential assumption employed in the self-consistent method is that each
inclusion (fiber) is embedded in the equivalent medium with as-yet-unknown moduli. In this case
A, = [I+S:M; (M, — M;)] ™ (83)

loc

It is seen that Eq. (83) is arrived at by replacing S, and M, for the matrix in Eq. (81) with S; and M; for the
composite.

(3) Differential scheme. The differential scheme can be regarded as an incremental form of the self-
consistent method. The essence of the method is the realizable construction of the final composite from the
matrix material through the successive replacement of an incremental volume of the current composite with
that of the reinforcement. According to Dunn and Taya (1993), we have

dM;(4) 1

where the fiber volume fraction / is taken as a variable, A% (1) is computed as in the self-consistent method.
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(4) Mori-Tanaka method. The key assumption in the Mori-Tanaka (1973) method is that a single in-
clusion is embedded in an infinite matrix subjected to an applied remote field equal to the as-yet-unknown
averaged strain (stress) field in the matrix. According to Dunn and Taya (1993),

AMT = AM DAY L (11! (85)

A% in Eq. (85) is computed as in the dilute approximation.

8. Numerical results and comparison

In this section, a full numerical comparison of the developed generalized self-consistent method to other
micromechanics methods are made. Hashin—Shtrikman’s bounds are also used to examine the accuracy of
various micromechanics methods.

Consider glass/epoxy composite with the constituent material properties:

E, =724 GPa, v, =02; E,=276GPa, v =035 (86)

where the subscripts 1 and 2 refer to the glass fiber and epoxy matrix, respectively.
By the well-known relations

E E
B=————————— G= 87
2(14+v)(1=2v)’ 2(14v) (87)
it is easy to obtain
B; =503 GPa, G;=30.2GPa; B,=341 GPa, G,=1.02 GPa (88)

The variations of the effective in-plane bulk, in-plane shear and longitudinal shear moduli with the fiber
volume fraction are plotted in Fig. 5, where the fiber aspect ratio y, = 0.3 for various micromechanics
methods and Hashin—-Shtrikman’s bounds are suitable for all shapes. It is seen that the predictions of the
present method and Mori-Tanaka method are in excellent agreement. The self-consistent and differential
methods (especially, the former) give much higher predictions, whereas the dilute approximation gives
much lower predictions. It is not surprising considering the self-consistent method overestimates the in-
clusion interaction, whereas the dilute approximation ignores it. Form Fig. 5 it is also seen that in a large
range of variations in the fiber volume fraction 4, the predictions by the dilute approximation fall outside
Hashin—Shtrikman’s lower bound. The results by the dilute approximation may be unacceptable. Some
predictions by the self-consistent method fall outside Hashin—Shtrikman’s upper bound, and the accuracy
of the method is also suspicious.

By using the Mori-Tanaka method (1973), Huang and Hu’s model (1995) and the present model, the
variations of the in-plane bulk modulus and of the transverse shear modulus with fiber aspect ratio y, are
shown, respectively, in Fig. 6a and b for two different fiber volume fraction, A = 0.4 and A = 0.6. The three
methods all indicate that as y; > 0.5, y, has little influence on the effective moduli. However, as y, < 0.5,
especially y, < 0.3, it has a strong influence on the effective moduli. As y; > 0.5, the three methods give
almost identical effective shear modulus, whereas the Mori-Tanaka method gives slightly low shear
modulus. As y, < 0.5, Huang and Hu’s model provides higher estimates of the effective moduli, and the
series solution of the model diverges as y, < 0.1. In the range of variations in the fiber aspect ratio of
engineering composites, the results predicted by the present model and Mori-Tanaka method are in rea-
sonable agreement. However, in the limit case of y; — 0, the two methods will give significantly different
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Fig. 5. Comparisons of micromechanics methods (y = 0.3): (a) in-plane bulk modulus; (b) in-plane shear modulus; (c) longitudinal

shear modulus.
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Fig. 6. Variations of in-plane effective moduli with aspect ratio y: (a) in-plane bulk modulus; (b) in-plane shear modulus.

results. This is an open problem of theoretical interest yet, though it may fall outside practical application
limits.
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Numerical results show that the generalized self-consistent method is well suited for commonly coun-
tered range of fiber behavior. The method can provide reasonable results for a full range of variations in
fiber aspect ratios (from circular fiber to ribbons) and for a complete spectrum of fiber volume fractions
(from 0 to 1, and the latter limit case shows the correct asymptotic behavior in the fully packed case), for
extreme types of the inclusion phase (from voids to rigid inclusions). Two extreme cases of fibers, i.e. tunnel
voids and rigid fibers are taken as the illustrative examples: Fig. 7 shows the variations of the effective
moduli with the aspect ratio of elliptical voids; Fig. 8 shows the variations of the effective moduli with the
aspect ratio of rigid inclusions.

It is of interest to examine the sensitivity of the five effective material constants to the fiber section aspect
ratio. Define aspect influence factors as

_ B _ Gr B LT _ Gi
Fy=—, Igr=——, L=, Fur=—, Ffour=
Gto Eyo VLTO Grro

(89)

where Gt denotes the transverse shear modulus, in instead of G in Sections 24, the subscript 0 refers to the
value of the modulus for y = 1, i.e. for the circular section fiber.

1 0.8
(a) | (b)
08 | [ =01 | 0.6 | ——=0.1
—2=0.3 L —2=0.3
éj ——2=0.5 Q 04} ——)=05
Q ——2=0.7 o | ——2=0.7
—>—2=0.9 02| —>—2=0.9

. 0 02 04 06 038 1

Y Y
Fig. 7. Variations of in-plane effective moduli with aspect ratio y for voids (v, = 0.35): (a) in-plane bulk modulus; (b) in-plane shear
modulus.
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Fig. 8. Variations of in-plane effective moduli with aspect ratio y for rigid fibers (v, = 0.3): (a) in-plane bulk modulus; (b) in-plane shear
modulus.
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Fig. 9. Aspect influence factors of various effective moduli (1 = 0.4).

The variations of the aspect influence factors of the five material constants with the fiber section aspect
ratio are plotted in Fig. 9, where the properties of the constituent materials are taken as

L =04, E =413.69 GPa, v =02; E,=4.1369 GPa, v,=0.35 (90)

It is seen that the variations of various curves are very different. Fg and F, r are almost horizontal
curves, which indicate that the fiber shapes need not be considered in estimating the effective longitudinal
tension modulus and major Poisson’s ratio. Fgrt varies the most dramatically, which indicate that the
aspect influence factor must be considered in estimating the effective longitudinal shear modulus.

Referring to Whitney and Riley (1966), experimental results on boron fiber reinforced composites in-
dicate reasonable agreement with theory for longitudinal and transverse moduli, whereas very poor
agreement with theory is obtained in the case of shear modulus. To yield reasonable predictions, semi-
empirical equations, such as the widely used Halpin—Tsai equations (for example, see Jones and Devens,
1999) are introduced, where some constants must be determined by experiments. From Fig. 5 in Whitney
and Riley (1966) it is observed that the shape of fiber section of the specimens are irregular, however, a
theoretical model of circular section fiber is taken. The circular fiber model can provide accurate predictions
for the longitudinal tensile modulus, but underestimates the effective longitudinal shear modulus. This is
why their theoretical predictions for the latter are much lower than the experimental results. In fact, if the
fiber section shape is taken as an equivalent ellipse with the aspect ration y = 0.4, the theoretical predictions
will be in reasonable agreement with the experiments.

9. Conclusion

A three-phase confocal elliptical cylinder model is proposed for fiber-reinforced composites. Based on
this model, the generalized self-consistent method is extended to cover the case of elliptical section fibers
oriented transversely randomly. The reasonableness of the fiber distribution function in the three-phase
confocal elliptical cylinder model is shown.

Using the conformal mapping technique integrated with the Laurent series expansions, the analytical
solutions for relevant plane strain, modified plane strain and longitudinal shear problems are obtained. The
algebraic equations are established for predicting all the five effective moduli of fiber-reinforced composites,
accounting for randomness in distribution and section orientation of fibers in a statistical sense.
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The extended generalized self-consistent method provides convergent and reasonable results for a full
range of variations in fiber section shape (from circular fibers to ribbons), for a complete spectrum of the
fiber volume fraction (from O to 1, and the latter limit shows the correct asymptotic behavior in the fully
packed case) and for extreme types of inclusion phases (from voids to rigid inclusions).

The dilute, self-consistent, differential and Mori-Tanaka methods are also extended to cover the case of
transversely randomly oriented fibers. A comparison of the generalized self-consistent method with the four
micromechanics methods and with Hashin—Shtrikman’s bounds is made. It is seen that the generalized self-
consistent method and Mori-Tanaka method provide very close predictions, whereas other method,
especially the dilute approximation and self-consistent method, lead to significant deviations. Most pre-
dictions by the dilute approximation and some predictions by the self-consistent method fall outside
Hashin-Shtrikman’s bounds, and the accuracy of the two methods (especially the former) are suspicious.

A very different dependence of the five effective moduli on fiber section shape is theoretically predicted,
and it provides a reasonable explanation on the poor correlation between previous theory and experiment
in the case of longitudinal shear modulus. Such a study is of importance in improving accuracy in mi-
cromechanics predictions.

The three-phase confocal elliptical cylinder model can also serve as an inclusion/interphase layer/matrix
model, in terms of which, the stress concentration in such microstructures can be investigated (refer to Ru
et al., 1999; Wu and Du, 2000; Jiang and Cheung, 2001). This work will be left for readers.
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Appendix A. The algebraic equation to determine the expansion coefficients of the complex potentials

m 1 2M—1
(%—Su—z)am—slzbm—%cm—Su(p%—F—z) Z kak:() (Al)
P P1 P 1 k=m+2,m+4
l 2M—1
(Plzpfm - SlZmP%)am — S12bp —Pzzﬂfmcm —S12 (P% + —2> Z kai =0 (A.2)
1 k=m+2,m+4

m m
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where m = 1,3,...,2M — 1, which leads to 6M equations; p;;, ¢;; and s;; refer to Eq. (52); a_; = a, the
unknown coefficients with a subscript larger than 2M — 1 are taken as zero; J;; is the Kronecker notation

_JO0, i
5:-]-{1, iy (A7)
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